
B SD Portals for LINUX 2.0

A. David McNab t

NAS Technical Report NAS-99-XXX

NASA Ames Research Center

Mail Stop 258-6
Moffett Field, CA 94035-1000

mcnab@nas, nasa. gov

Abstract

Portals, an experimental feature of 4.4BSD, extend the filesystem namespace by exporting

certain open () requests to a user-space daemon. A portal daemon is mounted into the file

namespace as if it were a standard filesystem. When the kernel resolves a pathname and

encounters a portal mount point, the remainder of the path is passed to the portal daemon.

Depending on the portal "pathname" and the daemon's configuration, some type of open (2)

is performed. The resulting file descriptor is passed back to the kernel which eventually

returns it to the user, to whom it appears that a "normal" open has occurred. A proxy portalfs

filesystem is responsible for kernel interaction with the daemon. The overall effect is that
the portal daemon performs an open (2) on behalf of the kernel, possibly hiding substantial

complexity from the calling process. One particularly useful application is implementing a

connection service that allows simple scripts to open network sockets. This paper describes

the implementation of portals for LINUX 2.0.

tDavid McNab is an employee of MRJ Technology Solutions, Inc.

2. OVERVIEW OF PORTALS

1/ INTRODUCTION

One of the fundamental design commitments of UNIX is

that all I/O devices can be represented as simple files in a

hierarchical namespace. For example, disk devices can be

addressed as long arrays of disk blocks through a device

mapped into the filesystem. As networking became more

integrated into the UNIX environment, it was natural to
seek to extend this mo_lel to the network.

Programmatically, sockets are represented as file de-

scriptors just as regular files are. However they require
considerably different and more complex handling. For

example to open a TCP socket to a particular port, one
must first create the socket, then build a structure de-

scribing the relevant network address, then connect (2)
the socket to the address, and finally begin exchanging

data. In a flexible programming language with full ac-

cess to the UNIX API this is not terribly complicated, and

in most cases it can be automated by writing a more ab-

stract tcp_open{) function that hides the details. But

other programming environments do not have access to
the full UNIX API. For example the standard UNIX shells

and tools like awk (1) can open and close files but present

no interface to the necessary socket system calls.

Thus it is desirable, at the very least on an experimental

basis, to explore the possibility of mapping the set of pos-

sible network connections into the filesystem. This would

allow any process capable of the simplest of UNIX file

I/O operations to open a network connection and read or
write to it. It also renders the use of detail-hiding helper

functions, as described above, unnecessary, since a pro-

grammer can simply open a standard filesystem pathname

to gain access to the network (although in some cases this

will not provide the necessary flexibility). Finally there

is a certain aesthetic appeal in demonstrating that the el-

egant UNIX model can be extended to support a type of

I/O for which it was not explicitly designed.

In 4.4BSD, an experimental feature called portals was

introduced to meet these types of requirements. The work

described here is a transfer of the portal concept to the

LINUX 2.0 environment.

2/ OVERVIEW OF PORTALS

In 1985 Presotto and Ritchie described a connection

server[4]: a service process that accepts requests to open
connections of some sort, whether they be to a network

resource or instructions to dial a modem and connect to a

service provide, and then processes them on behalf of its

clients. Thts has the destrable effect of h,dmg the details

of the opening procedure from the client.
After a connection server does its work, it must have

some mechanism by which it can transfer the open con-
nection to the client. The infrastructure to support this was

first introduced in 4.2BSD and is now implemented in al-

most all UNIX systems. The BSD UNIX senclmsg(2)

and recvmsg (2) system calls can be used to pass open

file descriptors across UNIX domain sockets. Thus a con-

nection server can receive a request from a client, open the

appropriate connection, then use sanc_sg () to pass back
the file descriptor. The client accepts it with recvmsg (),

and the file descriptor can then be used to access the un-

derlying connection. Conceptually, the server's file de-

scriptor is a handle for the kernel data structures repre-

senting the connection. When the handle is passed to an-

other process, the kernel structures remain unchanged but

the recipient gains a reference to them.

4.4BSD portals use essentially the same mechanism,

although the problem is complicated because in order

to map the connection service into the filespace a ker-

nel filesystem implementation is required. A portal dae-

mon provides the connection service. This is a user-

space background process that accepts connection re-

quests, does the appropriate work, and returns an open
file descriptor using sendmsg (). The kernel generates

connection requests based on the pathname used to access

a portal-space "file".

The mapping of "connection space" into the file names-

pace is performed by a filesystem called portalfs. Con-

ceptually, portalfs is simple. The point at which the por-

tal namespace is mounted indicates a border between the

"normal" file namespace and the connection namespace.

As the kernel processes open () requests it gradually re-

solves the pathname passed as an argument of open ().

If a portal mount point is encountered, the resolution pro-

cess stops. The portion of the pathname after the mount

point is passed to the portal daemon. The daemon in-

3. DESIGN AND IMPLEMENTATION

terprets the path as a network connection specification,

compares it with its configuration file to see whether the

type of connection is supported, and then executes the

open () on behalf of the kernel. The open file descriptor

is passed back using sendamg(), and the kernel effec-

tively calls recvmsg () to extract the file descriptor. All

of the communication between kernel and daemon pro-

cess takes place over UNIX domain sockets, using a sim-

ple protocol, portalfs is responsible for accepting the un-

resolved portion of the pathname from the kernel, broker-

ing ilae exchange with the daemon process, and returning

the new file desj:riptor to the process that called open ().

Consider an example. We mount a portal daemon into

the file namespace at/p, and a user subsequently opens

/p/top/foo. corn/1795. The kernel begins translating
the pathname, but when it encounters /p it determines

that a portal mount point has been crossed. The remain-

der of the pathname, tcp/foo, corn/1966, is passed by

portalfs to the portal daemon. This is interpreted as a re-

quest to open a TCP connection to host foo. corn, access-

ing network port 1966. The daemon builds an address

structure and performs the necessary socket: () and con-

nect: () calls to set up the connection, then sends back the
open file descriptor. Eventually the descriptor is passed

back to the client process, which can now use it to access

port 1966 on foo. com.

The implementation of 4.4BSD portals is described in

detail by Pendry and Stevens[2]. The source code is also

available via the freely available BSD implementations
NetBSD and FreeBSD, as well as others.

31 DESIGN AND IMPLEMENTATION

The primary design goal was to provide portal service

and support the 4.4BSD portal daemon without substan-

tial modification. The LINUX implementation of portals

should appear to the portal daemon to be functionally

the same as the BSD implementation. This allows us to

take advantage of previous work in developing portal dae-
mons.

A secondary goal was to limit changes to the LINUX

kernel. Naturally the portal filesystem itself, previously

unimplemented in LINUX, is new code, but the ideal was

to avoid making any other changes to the OS. It turns out

that some minor modifications were necessary, but they
consist of a handful of additional lines of code in two ker-

nel modules.

Another secondary goal was to ensure that the portal

code did not introduce any additional instability to the

LINUX kernel, nor that it could cause user processes to

"lock up", in other" words to sleep uninterruptibly while
accessing portals.

3.1/ THE PORTAL DAEMON

The 4.4BSD portal daemon is implemented as child pro-

cess of the command that mounts a portal filesystem. This

program, mount_portal (8), typically runs as part of the
boot process: Its first action is to open a socket that will

be used to listen for kernel requests. This listen socket

is recorded as one of the portalfs-specific arguments to

mount (2), which is called to graft portalfs into the file

namespace. If the mount succeeds, the program spawns
a copy of itself which becomes the portal daemon. This

daemon runs in the background for the remainder of the

portal's lifetime, accepting incoming requests and spawn-
ing a copy of itself to process each of them. After spawn-

ing the daemon the parent exits, so that the mounu com-

mand behaves synchronously as one would expect.

The mount:_porcal program used for the LINUX port

was taken from release 1.3. l of NetBSD. It supports two

types of portals: tcp and _. The tcp type maps path-
names of the form t:cp/<host:>/<port:> into network

connections, where <hose> can be a hostname or an IP

address and <port> is a port number. Thefs-style por-

tal simply re-maps pathnames of the form fs/<paeh>
to <pat:h>. It is intended to be used to support controlled

egress from a chrooe (8) environment. An extended ver-

sion of the portal daemon could support filesystem ex-

tensions, for example access control lists. The NetBSD

version of the daemon did not support the tcplisten-type
portals described by Stevens and Pendry, hence it is not

possible to implement TCP servers using this code I.

The rnount:..por t:al program itself was well written for

4.4BSD and was relatively easy to port. The most sub-

IOf course since the LINUX implementation of portnlfs is compatible

with the BSD portal daemon protocol, an extant daemon that supports

tcplisten portalscallbe incorporated relatively easily, requiring only a

port of user-level code.

3. DESIGN AND IMPLEMENTATION

stantiai change was required because old-style regular ex-

pression library routines were used to process the config-

uration file. LINUX did not support these routines well,

so the program was modified to make POSIX-compliant

calls. Other modifications were primarily to remove de-

pendency on 4.4BSD's mount infrastructure, which pro-
vides utility functions for processing arguments, and mi-

nor changes to function calls arguments or header file in-
clusion.

There was what appeared to be a minor bug in the

portal daemon's handling offs-style portals. Files were
always opened with mode O_RDWR]O_CREAT. This pre-
vented reads from files to which the user did not have

write permission; an unnecessary restriction. Fortunately,

the portal credentials structure, which is passed from the

kernel to the daemon and primarily consists of informa-

tion about the userid and groupid of the process access-

ing the portal, also includes a field for the open { } mode.

By changing the open () call in the portal daemon to use

the mode value from this field it was possible to correctly

open read-only files. However because of restrictions in
the mode information available to the kernel when it sends

the portal request, all write-mode opens have the O_CrtEAT

flag set.

A significant concern during design was whether the

UNIX domain file descriptor passing code in the LINUX

kernel worked properly. This is an obscure portion of the

BSD networking system and the author considered it pos-

sible that the code was either not fully implemented or not

correct in LINUX. To allay these concerns, a user-space

portal test client was developed. This consisted of approx-
imately 200 lines of C code intended to simulate the ker-

nel's component of the interaction between portalfs and

the portal daemon. Essentially it constructed a portal open

specification based on command line arguments, sent the

request to the portal daemon, accepted a file descriptor in
return, and then read a small chunk of data from the file

descriptor. Using this code it was possible to test and de-
bug the portal daemon before the kernel code that would

call it was developed. It turned out that the LINUX ker-

nel performed the file descriptor passing correctly and the

portal daemon behaved perfectly without additional mod-

ifications. This provided a certain peace of mind that was

invaluable during kernel debugging.

3.2/ THE PORTAL FILESYSTEM

Any type of syntactic port of the 4.4BSD portalfs kernel

code was impractical. Despite providing roughly similar

functionality in many areas, the LINUX and BSD kernels

are very different. Thus the "port" of portalfs actually

consisted of establishing a thorough understanding of the

BSD code and then decking how to reconstruct similar
behavior for LINUX.

The LINUX file system infrastructure does not pro-

vide vnodes, used in BSD to provide an abstraction of

filestore-sp¢cific inodes. Vnodes store function vectors

that describe the filesystem specific implementation of ab-

stract operations. In LINUX, the inode structure acts as

a vnode, in that it is the generic in-memory representa-

tion of a filesystem inode, but it is also used directly by

some filesystems. A generic Virtual Filesystem, or VFS,

provides skeletal filesystem functionality. Three sets of

function calls can be provided by filesystem implemen-

tors to override or supplement the VFS calls[5]. The end
result is similar to the vnode interface but less flexible and

rigorous.

Superblock operations manage the filesystem super-

block, providing facilities such as staffs(), and are

responsible for correctly mounting and unmounting the

filesystem, lnode operations are used to support generic

filesystem object services, such as link() and un-

link (), create (), lookup (),mkdir () and rmdir (),

and so forth. Operations that affect the kernel's file

structure, which is essentially the internal representation

of an open file descriptor, are segregated as file opera-
tions. These consist of lseek(), read(), write(),

open (), etc.

File system development in LINUX largely consists of

deciding which of the members of these three sets of oper-

ations must be explicitly implemented for the new filesys-

tern, in contrast with those for which the generic VFS

functionality is sufficient. In the case of portalfs, most of

the superblock operations are specially written, but only

one each of the file and inode operations are required.

Superblock Operations

Five custom superblock operations are required to support

portalfs. These primarily support mounting and unmount-

3. DESIGN AND IMPLEMENTATION

ing. Portal_read_inode() "reads"a portalinode--in

fact there is a single inode to read, representing the root di-

rectory, and it is synthesized and stored in memory rather

than being read from filestore. Portal_write_inode ()
consists of marking the inode clean, which should be

a no-op but is included as a safety measure. Por-

tal_put_inode () "releases" an inode that is no longer

needed. For portalfs this consists of deallocating stor-

age used to record the connection that is being opened.

Portal_put_super() is called when the filesystem is

unmounted and any superblock-related cleanup needs to

be done. For portalfs this consists of releasing some ker-

nel memory used to store data needed to find the portal
daemon, specifically a socketpointer and a file reference.

VFS mandates that portalfs also reset the superblock's af-
filiated device to zero, indicating "none". Finally, por-

tal_statfs () synthesizes some reasonable-looking val-

ues for a seat structure, so that programs like df (8) will
display portal filesystem data reasonably.

Inode Operations

The open(2) system call invokes two VFS operations:

lookup () and open (). The former is called repeat-

edly to resolve the directory components of the pathname.

The latter is called once, when the "end" of the path-
name is reached. For the portal, filesystem open () is the

workhorse, and as a file operation it is described in the
next section.

VFS lookup () calls a filesystem-specific lookup ()

to do any special processing. In the case of por-

tal_lookup (), this consists of recording the remaining
pathname so that the file operation open() can subse-

quently retrieve it and send it to the portal daemon. This

is done by allocating an inode and storing the pathname
in it.

The generic LINUX inode contains a union structure

that provides a place to store filesystem-specific data. One

design option was to create a portal data structure and

add it to the list in the union. However this required

modifying the header file that specifies the inode struc-

ture. Fortunately, to provide support for run-time con-

figurable kernel modules, LINUX designers included a

generic void* pointer in the union, portal_lookup ()

allocates a chunk of kernel memory sufficient to store the

remaining pathname, copies the path into it, and then sets

the generic pointer to the address of the string. If the in-

ode is freed using the superblock put_inode () opera-
tion, this storage is deallocated.

Unfortunately the actual implementation was not this

simple. In 4.4BSD, the lookup() vnode operation takes

as arguments the ,remainder of the pathname to be re-

solved and the address of a pointer to the pathname com-

ponent to be resolved next. Thus the 4.4BSD portal code
can extract the entire remainder of the pathname, record

it, move the progress pointer to the end of the string, and
return. This allows the filesystem to choose how much of

the path to resolve and to interpret it in whatever way is
useful.

In LINUX, lookup () takes as arguments a directory

and a filename to look up in that directory, and it returns
the resulting inode. In other words the LINUX VIeS as-

sumes that all pathnames are a sequence of directories,

possibly ending with a file, and that they can be resolved

one component at a time. For portalfs, this is a disas-

trous assumption, and in general it is needless and irk-

some. For example it presents a problem for developers

of distributed filesystems, where a significant optimiza-

tion might be to resolve an entire remote pathname in one
operation.

Two design options presented themselves. The first

is to allow the LINUX VFS to behave as it wants to,

repeatedly calling portal_lookup() for each compo-

nent of the "pathname". This adds sighificant complex-

ity: portalfs now needs to keep track of the sequence of

lookup () calls and build the full pathname as it goes.
The alternative is to insert a snippet of code to the VFS

implementation of open () so that if a portal mount point

is crossed, the entire remainder of the pathname is passed

as a single argument to lookup(). The latter imple-

mentation was chosen, despite the fact that it required a
modification to the extant LINUX code--albeit a four line

change. This choice was made primarily in the interest

of minimizing complexity and is discussed further in the
commentary section.

After this change to the kernel's fs/namei, c routine

was made, the implementation of portal_lookup () was
straightforward.

3. DESIGN AND IMPLEMENTATION

File Operations

The majority of the work required to implement portalfs

comes in the open () file operation, implemented as por-

tal_open (). By the time the kernel calls this routine, the

portal "pathname"--that is, connection specification--
has been recorded as auxiliary data in an inode allo-

cated for this purpose. This inode is passed into por-

tal_open (), along with a pointer to a pre-allocated file

structure that will be used for the file being opened.

In the abstract, the work done by portal_open() is

straightforward: extract the connection specification, send
it to the daemon, wait for a response that includes a file

descriptor, and then return that file descriptor. Note that

this last step requires some skullduggery, described later.

In practice, the implementation of portal_open () is

fairly complicated because a substantial amount of net-

working code had to be duplicated. As discussed in full

detail in the commentary section, the LINUX implemen-
tation of UNIX domain sockets makes assumptions that

limit its usefulness when called from elsewhere in the ker-

nel. For example, it is assumed that certain data structures

are stored in the user process's virtual memory context,

hence they must be copied using special functions that
fail when called on kernel-allocated memory.

The result is that in order to make the necessary con-

nect (), sendmsg (), and recvrasg () calls, special ver-

sions of these functions had to be re-implemented in-

side portalfs. In practice this consisted of cutting out

the UNIX domain implementations from the networking

portion of the kernel and pasting them into the portalfs
code. Much of the complexity of the full original calls

was unneeded, since portalfs has very specific needs, and

this code was excised. Where required, calling parame-

ters were changed and assumptions about the location and

type of memory being copied were changed. Nonetheless
an undesirable duplication of code occurred, and if the

standard implementations of UNIX domain sendmag ()
and recvrasg () are ever changed the portal-specific ver-

sions may require modification. The portal versions are

defined as statically scoped functions accessible only to

portal_open ()•

The final function of portal_open () is in returning

the file descriptor acquired from the portal daemon to the

user. In fact something slightly different happens. When

portal_open is called, a new, empty file table entry has

already been allocated for the calling process. Likewise, a

file descriptor has been allocated to point to that file struc-

ture. This is the file descriptor that will be returned to

the user. Hence portal_open () must copy the contents

of the file entry corresponding to the portal file descriptor

into the newly allocated file entry set up by open (). Then
the descriptor and file entry originally returned from the
daemon can be de,allocated.

In implementing portal_open () the need for a sec-
ond modification to the external kernel arose. In LINUX,

networking protocols have affiliated vectors of functions
similar to those used in the VFS. For example each pro-

tocol implements a create() method to implement the

protocol-specific details of the socket (2) system call.
Since portal_open() needs to allocate a UNIX do-

main socket, it was necessary to call unix_create(),

the UNIX domain protocol-specific initialization method.

However these functions are defined with static scope and

accessible only to the implementation of sockets. Thus

once again the design decision was whether to make a

change to the kernel at large or to duplicate a chunk of ker-
nel networking code inside the portaifs implementation.

In this case, unlike those of sendmsg () and recvmsg (),

the extant kernel function worked correctly when called

from the portal code. Hence it seemed more natural

to modify the networking code to export the protocol-

specific functions than to duplicate code. This was done
by adding a three line function to net/socket.c that

takes as an argument a protocol specification and returns

a pointer to a structure containing the operations specific

to that protocol.

3.3/ IMPLEMENTATION SUMMARY

Excluding the implementation of portalfs itself, only

two functional changes were made to the LINUX kernel.
Four lines were added to t!s/namei.c to short-circuit

pathname resolution in the special case where a portal

mount point is crossed, and three lines were added to

net/socket.c tO export the protocol specific method
vector. There were also minor changes to the build infras-

tructure to support the portal changes, for example adding

a portal filesystem type and adding a kernel configura-
tion variable to specify whether or not portals are to be

5. COMMENTARY ON LINUX

included in a build.

portalfs itself was implemented in three C files, one for

each type of operation, super, c implements the super-

block operations and is 310 lines long. inodo.e im-

plements portal_lookup() and consists of 131 lines of

code. file. e implements the more complicated r,or-

tal_open () file operation and is 542 lines long. Overall

approximately 1000 lines of kernel code (comments in-

eluded) were required to implement portalfs.

The administrative mount_portal command and por-

tal daemon were ported from 4.4BSD and required on the

order of thirty lknes of changes, mostly dealing with regu-
lar expression processing.

4/ RESULTS

The primary design goal was satisfied. The BSD portal
daemon was ported without major changes and works cor-

rectly as the connection service for the LINUX portal im-

plementation. It is now possible to mount a portal filesys-

tern and open network connections in LINUX in exactly
the same way as takes place in 4.4BSD UNIX. The fs-

type portals also work correctly, with the exception that

the user's umask is ignored. This could be corrected but

would require modifying the portal credentials structure
to include umask data. Created files do have the correct

user and group ownership, and the correct access controls
are enforced.

One secondary design goal--minimizing changes to
the LINUX kernel--was achieved. Only seven lines of
code were added to the LINUX kernel. The other see-

ondary goal, avoiding introducing new kernel instability,

also seems to have be satisfied, although the portal imple-

mentation has not been heavily tested or even used by any-
one but the designer. It is possible that there are resource

leaks or corner-case errors yet to be discovered. The basic

implementation does not cause any kernel faults.

Performance tests were minimal. To ensure that the

cost of opening a portal socket is not prohibitive relative

to the cost of making direct socket system calls, two pro-

grams were written. The first was a shell script that re-
peatedly read from the daytime service on the Iocalhost

using cat < /p/tcp/localhost/daytime, where/p

was the portal mount point. The second was a short C pro-

gram that did the same thing using socket system calls.

The shell version completed 100 reads in 2.05 seconds,

with user CPU consumption of 0.44 seconds and system

CPU consumption of 0.41 seconds 2. The C program per-
formed the same number of reads in 0.52 seconds, con-

suming only 0.03 seconds of user CPU time and 0.07 sec-

onds of system CP_U time.

Thus initially accessing a network resource via a portal

takes on the order of four times the elapsed time and con-
sumes roughly an order of magnitude more CPU time than

using sockets directly. These are very crude estimates in-

tended only to give a rough idea of portal overhead. Of

course these numbers are of dubious importance anyway,
since they represent a one-time cost for opening the por-

tal. All subsequent access occurs as if the user process

had directly opened the file or socket directly, thus there
is no overhead.

51 COMMENTARY ON LINUX

LINUX is a young operating system, and direct compari-

son with the more mature BSD code base is perhaps un-

fair. There certainly appear to be parts of the LINUX ker-

nel that would benefit from an infusion of the design ex-

pertise developed over the neatly twenty years of BSD's
lifetime--for example the introduction of a vnode ab-

straction. If the LINUX development model scales well,

architectural changes like this should take place evolu-
tionarily as the current design encounters limitations.

However there is a different class of problem that be-

came apparent during the portaifs work. This is not

so much an issue of operating system design--which

should work itself out if the LINUX development model is

valid--but rather issues relating to dubious programming

methodology. That is, these are engineering concerns that

apply to any large software system, regardless of its ap-
plication.

One example is a failure to rigorously adhere to the

principles of functional programming, specifically a ten-

dency to group several clearly orthogonal functions into a

single large subroutine. This makes it impossible to use

2This excluded the overhead of a shell loop, which was measured
independently and subtractedfrom the test results. It was not possible
to accountfor the timeconsumed by the portaldaemonon behalfof the
USel'.

6. RELATED WORK

some a proper subset of those functions. An example was

in the implementation of portal,connect (). During

the portalfs development one requirement was to take a

pair of sockee structures and connect them. This is

exactly the functionality provided by the UNIX domain

socket protocol operation unix_eonneee (), except that
unix_eonnece () takes a socket and an address structure

as arguments instead of two sockets. In other words the
conversion of the address to a socket structure, which is

completely independent of the logic necessary to connect
two sockets, is hardwired into the same function that does

the connect. A similar and perhaps more vexing prob-

lem was the failure to separate the orthogonal functions

of copying-in data from the user's address space and con-

ducting socket functions using that data. This is the de-

sign error that forced the duplication the senc_asg () and

recvmsg () code with minor changes pertaining only to

the source of the data upon which they were operating.

A second problem is excessive and unnecessary use of

internal linkage, i.e. the declaration of kernel functions
as seaeic. In some cases there is no conceivable use

for a "helper" function and a static declaration is clearly

in order. This is the case in the implementation of por-

tal_open (), which uses its own statically declared ver-

sions of sendmsg () and recvmsg (). These are special

purpose "hacks" that clearly should not be exported to the
rest of the kernel. However there were several cases where

useful data or functionality was declared static for no ap-

parent reason. One can infer that there was a concern over

namespace pollution, in which case perhaps a subsystem

naming convention should be introduced, or perhaps the

code author simply failed to consider the possibility that
the function would be useful elsewhere. A prime example

was in failing to provide any mechanism to access proto-

col specific operations outside of the socket implementa-
tion code.

The LINUX kernel appears very much to have been

written to service requests from user-space. Of course

this is the primary function of an operating system--to

provide a virtual machine abstraction for userspace appli-

cations. However it is often the case that a piece of code

useful for application level software will also be useful to

kernel code in another subsystem. Careful design of ker-

nel subsystem abstractions and intrakernel programming

interfaces is important for keeping an operating system

flexible. This is one design element of the BSD-based
kernels that makes them attractive to OS scholars and de-

velopers, and both of the methodological problem areas

described above suggest than it is an area to which Lll_ttx

designers could pay more attention.

6/ RELATED WORK *

The original B S D implementation of portals is described

in detail by Stevens and Pendry[2] and briefly in the

4.4BSD book[3], the latter also describing the general

BSD file system infrastructure.

Presotto and Ritchie describe the general idea of a con-

nection server[4], and Stevens later provides an example

of such a system using UNiX domain socket passing[61.

The Sprite operating system provide pseudo-devices,

which map user programs into the file space[7].
Plan 9 extended the UNIX I/O model to the network

by building networking into the kernel in a more funda-

mental way than BSD did with sockets. All Plan 9 UO,

including networking, is done through the file namespace.

User processes have access to detailed network informa-

tion either directly through the file system or through a

connection server called cs, which is also mapped into the

file namespace[8].

FUTURE WORK

One avenue for future work is expanding the functionality

of the portal daemon, for example adding tcplisten capa-

bilities so that scripts can use portals to act as network

servers. Another possibility would be modifying the fs
server to implement access control lists, as suggested by

Stevens and Pendry.

The mount_portal (8; program could be better inte-

grated into the suite of LINUX mount programs, so that it
conforms to LINUX standards.

The basic technique of using UNIx domain sockets in-

side the kernel to communicate with user-space processes

presents some interesting possibilities. For example it

may be possible to build a general purpose proxy filesys-

tern. This would look to external processes to be a "nor-

mal" filesystem, but internally it would direct all requests

for inodes, directory entries, and other filesystem data

8. CONCLUSION

to an external daemon. In other words a daemon pro-

cess would act as the filestore portion of the filesystem.

The daemon could synthesize data as needed, could per-

form transformations on extant data, or could retrieve the

data from other hosts. This would support out-of-kernel
filesystem development, although it introduces substan-

tial safety concerns--the proxy file system would have to
be careful to ensure that data structures returned from the

daemon were consistent and would not introduce prob-
lems.

8t CONCLUSION

The goals of this work were to support BSD portal pro-
cesses in a stable LINUX environment with as few code

modifications as possible. These were met. Only seven

lines of kernel code were changed, and the LINUX imple-
mentation of portals works correctly with the ported but

basically unmodified BSD portal daemon. Portals pro-
vide network access for scripts and programs that do not

have access to the full UNIX networking API. The ex-

tent to which this is practically useful is an open question,

but given an implementation with which to experiment the

user community should provide the answer.

l0

Bibliography

[1] Joy, Cooper, FabIy, Leffler, McKusick & Mosher, 4.2BSD System Manual, UNIX Programmer's Manual, 4.2

Berkeley Software Distribution, Volume 2C, Computer Systems Research Group, Univ. of California, Berkeley,

CA; 1983.

[2] R. Stevens & J. Pendry, "Portals in 4.4BSD" USENIX Conference Proceedings, pp. 1-10, January 1995.

[3] McKusick, Bostic, Karels, & Quarterman, The Design and Implementation of the 4.4BSD Operating System,

pp. 237-8 (portals) and general material, Copyright (_) 1996 by Addison-Wesley Publishing Company, Inc.

[4] D. L. Presotto & D. M. Ritchie, "Interprocess Communication in the Ninth Edition UNIX System"

Proceedings of the 1985 Summer USENIX Conference, Portland OR; 1985.

[5] M. Beck, H. B6hme, M. Dziadzka, U. Kunitz, R. Magnus, & D. Verworner, Linux Kernel Internals, Second

Edition, Copyright (_)1998 Addison Wesley Longman, ISBN 0-201-33143-8.

[6] W. R. Stevens, UNIX Network Programming, Copyright (_)1990 by Prentice-Hall.

[7] B. B. Welch & J. K. Ousterhout, "Pseudo Devices: User-Level Extensions to the Sprite Filesystem;'
Proceedings of the 1988 Summer USENIX Conference, pp. 37-49, San Francisco CA (1988).

[8] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, P. Winterbottom, "Plan 9 from Bell

Labs," Plan 9: The Documents, Copyright (_)1995 by AT&T, pp. 1-22.

11

